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1 INTRODUCTION

Although the Discrete Hartley Transform (DHT) has been around for many years(refl.21.
considerable new interest in this transform has been generated recently. This renewed interest
is a result of the discovery of a Fast Hartley Transform (FHT) algorithm(ref.3). [u conmmon
with the Fast Fourier Transform (FFT), the FHT algorithm computes the DHT of a data
sequence of N elements in a time proportional to N log2 N. Early work(ref.3) indicates the
FHT is as fast or faster than the FFT, inferring the FHT is a more efficient substitute for
the FFT in areas such as spectral analysis, digital processing, and convolution.

The signal processing scheme for the Jindalee Over The Horizon Radar (OTHR) employs the
FFT for range processing, digital beamforming, and Doppler processing. The FFT consti-
tutes a significant portion of the total processing load. Future developments in operational
OTH radars for Australia will lead to an increased range processing load, which relies ahlnot
exclusively on the FFT, hence a more efficient algorithm is of interest.

The definition of the DHT is given in Section 2, along with a summary of its properties.
In Section 3 the fast DHT and DFT transforms are described and comparison made of the
number of processing steps required for the FFT and FHT algorithms. Section 4 establishes
the suitability of these two algorithms for Jindalee signal processing, and conclusions are
made in Section .5.

2 THE HARTLEY TRANSFORM

Consider a sequence of N real numbers x,. for n = 0, 1,....V - 1. The Discrete HartleY
Transform of this sequence is defined(ref.3) as

1 N-I [ 27rnk ) .27rnk

rn=O

k=0, 1,...N-1.

This is often written as
N-I 2,rnk

Hk = " x ,] xcas( -) 2)

k =0,1,...N- 1

where cas(O) = cos(O) + sin(O).
The inverse DIIT of a sequence of N real numbers Hk for k 0, 1, ...N - 1 is given by

N-I 2trnk
= E H (31)

k=0

n=0,1,...N-1.

The DHT has a number of interesting properties, that can be more readily understood by
comparison with the Discrete Fourier Transform (DFT). The corresponding expressions for
the DFT and inverse DFT are

l N-I 2irnk ?,r-k
F= - x[cos(--) -j sin(---) (k))

n=O
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k = 0, 1,...:V - 1.

,Nk-1 2 rnk ) . 27rnk 5x,= Z Fdcos(-N-) + j sin(---)] 5

k=0

n=0,1,...N-1.

From equations (2) and (3) we see that the forward and inverse DHTs are identical (apart
from a scaling factor). This can be of advantage on limited memory machines, requiring only
one algorithm he stored in program memory, rather than the two required for the (inverse)
DFT. Equations (4) and (5) show that the forward and inverse DFTs differ by a sign change
of the imaginary part. Also, the DHT uses real arithmetic only, while the DFT requires
complex arithmetic. The absence of complex arithmetic gives the DHT the appearance
of being simpler. It will be shown, however, that both the DHT and DFT are of similar
complexity.

It must be emphasised that the DHT and DFT are distinct transforms. Both offer an
alternative way of representing the same data. The DFT representation of the data sequence
., for n = 0, 1,....V - I gives us amplitude and phase information on sinusoidal frequencies

present in x,. The DHT gives the same information, but in a slightly modified form.

From equations (1) and (4) it is clear that the Hartley Transform Hk is not the same as the
Fourier Transform Fk.. As it is the Fourier Transform that we generally desire, the Harth1e
Transform is only of use if we can readily derive the Fourier Transform from it.

The DFT may be derived from the DHT as follows. Remembering that cos is an eVenl
function and sin is an odd function, inspection of equations (1) and (4) reveals that, for real
x, with n = 0.1 ,....N - 1. the even part of the DHT is equivalent to the real part of the
DFT. and the odd part of the DHT is equivalent to the negative of the imaginary part of
the DFT. Thus the DFT can be derived from the DHT by u add operations and i- subtract
operations (ignoring scaling by 2). Noting that H0 = HN and F0 = FN, mathematically we
can express the required relationships as

l eaI{F,.} = 1[, H..-[l~k Hk + HN-k] {;

n .N

2
with ?Zeal{ F .) symmetrical about F 12 ie R{Fk} = R{Fv-k.

Imag{Fk = I [Hk- iN-,k] (7)

Nn = 0,1 .... - -
2

with Imag{ Fk I anti-synmmetric about FN/2 ie I{ F} = -I{ FN-k}.

From the above it should be evident that for real x. with n = 0, 1,...N - 1, to determine the
DFT Fk for k = 0, 1,...N - 1 via the DHT, it is necessary to calculate the Hartley Transform
Hk for k = 0, 1, ...N - 1. There exist redundancies, however, in the DFT. it can be readily
seen that Fk = F k,, so it is only necessary to determine Fk for k = 0, 1 ... - 1. ie: otnl

2Y
half of the Fourier Transform need be calculated for real x,. This redundancy balances with
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the DHT's absence of complex arithmetic, making both transforms of similar complexity (in
terms of the number of arithmetic steps required).

The DFT can be performed on a sequence of complex data (ie: x., complex in (4)) and the
trdnsform will be of the same length and generally will also be complex. In contrast, the
DHT can only be performed on a real data sequence (x, real in (2)), the transform also
being a real data sequence of the same length. We have the problem then: how do we use
the Hartley algorithm to transform a complex sequence?

We can determine the Fourier Transform of a complex data sequence via the Hartley Trans-
form by separately transforming the real and imaginary parts of the complex sequence, and
then recombining these transforms. These steps are illustrated mathematically below.

Consider the complex sequence z, = x,, + jy, for n = 0, 1. _N - I where x, and y, are both
real sequences. Denoting the Fourier Transform operator by F{ } we have, by linearity.

Zk F{z,,} = Frx, + jy.}

F{xn} +jf{y.

= Xk +jl'k

k =0, 1,...N- I
where Xk, V , and Zk are the Fourier Transforms of x,, y,, and z. respectively. The DH1I

can be used to compute -Xk and Yk from x,. and y, in the manner described above. Thus
with little extra complexity, the DHT can be used to compute the DFT for real or complex
data (complex data requiring two distinct Hartley Transforms be performed).

3 PRINCIPLES OF FAST DHT AND DFT ALGORITHMS

While there exist many applications for the Discrete Fourier Transform (eg spectral analysis.
correlation, convolution), computing the DFT via the definition given in Section 2 requires a
considerable amount of processing. To directly transform a sequence of length N requires a
number of arithmetic operations of order N 2 ie doubling the length of the original sequence
results in a four-fold increase in the processing load. For large N this method becomes
impractical, requiring enormous processing power. In 1965 a fast alternative method of
determining the DFT was reported(ref.4). This Fast Fourier Transform could compute the
DFT in a time proportional to N log, N, r..dking it far more suitable than direct calculation
when transforming sequences containing many points.

The development of the Hartley Transform has proceeded in an analogous way. The Discrete
Hartley Transform was first defined in 1942(ref.1). Calculation via the definition, given
in Section 2, executes in a time proportional to N'. As with the FFT, a Fast Hartley
Transform has been defined(ref.3). This FHT algorithm, like the FFT, also executes in a time
proportional to N log 2 N, generating considerable interest since its discovery by Bracewell
in 1984.

It is instructive to analyse the way in which these fast transforms work. We will look at
the radix-2 FHT and FFT algorithms. Although not the most efficient fast algorithms. the
radix-2 transforms are the most widely understood fast method of transforming a sequence
of length N, with N = 2' : i integer.
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3.1 THE RADIX-2 FFT

To determine the Fourier Transform of x, n = 0, 1,...N - I and N 2';

let
1n = X2n

n = 0,1 .... N _l.

2

The sequences y, and z, are each of length , and have transforms

4--k

Ik=0 Yne N(1

Zk = E Zne vN 10)
n=O

N

k = 0 , ,... - _ 1.

The transform that we seek is Xk,

N-t

X Yxne -l(Il)
n=O

k=0, 1... -I.

Expression (11) can be manipulated to give

2222n+k 2 )h

= -Xne + X2fl+le~
n=O n=O

-. _!N ZA -1 .1-1

=EYne -~N + ejlg Z~e J
n=O n=0

so that
Xk= k+e - 

.e2 Zk. (12)

Also

Xk+F- = Yk + e-"e-j N Zk

or
Xk+A = Y - eJW'Zk. (13)

Expressions (12) and (13) are often written as

k =Yk +WkZk (l1l

.yk+A = Yk - WkZk (15)

with
Wk = Ne-A.
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The pair of equations (14) and (15) is often referred to as the FFT kernel or buttertly
operation, as it represents the fundamental building block of the radix-2 FFT algorithm. Thc
butterfly operation requires ' complex multiplications and N complex additions to compite
the sequence Xk for k = 0,1,2...N - 1, from the sequences Yk and Zk, k = 0, 1. 2 ...

The term "radix-2' is due to X being determined from the two transforms Yk arid Zk..\
large number of differcnt radix algorithms have been tried, including radix-4 and radix-S.
Interestingly, one of the fastest FFT algorithms, the Split-Radix, uses a hybrid scheme where
the length N DFT is computed from a length -v plus two length 7 DFTs.

The principle of the radix 2 FFT can be described as
1. generate length N DFT from 2 length a DFTs2. generate each length .i DFT from 2 length N DFTs

i. generate each length 2 DFT from 2 length 1 DFTs,

-each length I DFT is equal to itself.

Each of the above i steps (i = log 2 N) requires - complex multiplications and N coiptx
additions. Thus the length .V FFT requires - log2 N complex multiplications and .V log, V
complex additions.

3.2 THE RADIX-2 FHT

The development of the Fast Hartley Transform proceeds in a similar way to the FtFT. Sup-
pose we wish to determine the Hartley Transform of a real sequence .r, for n = 0. 1.2....V - I
and N = 2' with i:integer.
Let

fin = .r2n

-n -X2n+

N
n= 0,1 ...-N--I

' '2

The real sequences y, and are each of length N and have transforms

n=0

= -.cas( 4-rnk
n=0 

N

,V
k = 0, 1-. - -1.

We seek the transforM Xk.,

N-1 27rnk + n2rnk
.Vk = Z .r[cos(-----) + sir(---

n=V
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Expanding gives

- ., nk 47rnk 2rk .rnk 2rk
k = Ca -- v-) + :,(cos(- + - ) .sil( +-- --B

-0 N

This can be further expanded to give

74-nk -I 4trnk 2rk 4 11 k 2-rk
=k ,,.( -c-a. + zcos(-)cos(- ) - -',i(--.,,(-

F_ N NN

+.,Ink 2trk 4,+rnk 2,rk
)N ° .- ) + N N

Hence '2rrk 2irk
Xk. Yk + [ro( ' )Zk + sin(--)ZV_] 1

and
k cOs(-27r)Zk + 2r, 

'k
si.(-_)Zv-_). -

Equations (16) and (17) form the basis of the FHT algorithm. As with the FFT. tt I111I
calculates the length .N transform from two length a transforms. For tie radix-2 aitoritIt-
considered here. both the FIT and FFT require the same number of butterflies.

We see that the lIlT butterfly requires two real multiplications and three real additions.
where the FFT butterfly requires one complex multiplication and two complex additioti.
Reasoning in the same way as for the FFT, it can be shown that to calculate an N poit
FHT requires V log2 .V real multiplications and -,Vlog2 N real additions in tile fori
butterflies. As described in section 2, further operations of order N will also be required to
compute the DFT from this lartley Transform.

Comparing the execution speed of the FHT and FFT is not straight forward. 1VlIe FIl
butterfly requires the equivalent of four real multiplies and 6 real adds. twice as maniv-
for the FHT butterfly, but the FlIT can only be used for real data. (enerally twice '1.
many FHIT butterflies will be required for a complex transform, so that botl the FIIT1 and
FFT require the same number of real arithmetic operations from butterflies alone. .\tl

advantages that one may have over the other will be of order N. For large .V this difference
of order N will become relatively less significant, when compared with the total number of
arithmetic operations (which is of order N log2 N). The issue of execution speed coniparisont
is complicated further by the existence of more efficient FFT and FlIT algorithms. Ill
particular, an alternative real valued FFT (RFFT) exists(ref.5) that is shown to be faster
than any known FHT algorithm.

It is easier to compare the FFT and FHT with a specific application in mind. The liext
section looks at the specific application of the FHT and FFT to Jindalee signal lrocessik .
where purpose-built computer hardware is used to increase processing throughput.

L ="
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4 Ai'PLICATION OF FHT/FFT TO JINDALEE SIGNAL PROCESSING

k his section looks at the suitability of the FHT/FFT for current .indalee signal processing.
and also the implications for hardware design in future Jindalee radars. The flluwin-s
comparisons assume a radix-2 FHIT and FFT. This is justified as it has been showto rf.i.T I
that due to tilie similarity of the algorithms, any optimisation applied to one can lso I,,,
applied to the other with the same speed improvement.

Signal processing for the Jindalee OTHR(refS) relies heavily on the FFT It is used fi
ranging, where radar returns ate separated into range bins: digital bearnforring. whetr
radar returns are separated into azimuthal 'finger beams': and Doppler processing. wher,,
targets' radial speeds allows them to be separated from the large land/sea backscatter r-tit.

In order to mer't the required FFT load. Arithmetic Oriented (ARO) array pro-,i-, wi-ic-

designed and built(ref.!)) at FRL. The hardware of the ARO processor is optinise.l ar,,iiid
the FFT butterllv operation, with a hardware multiplier and two hardware adders ipi.ratii,_'
in parallel (the radix-2 FFT butterfly requires a complex multiply and two complex aldlI.
By employing a degree of pipe-lining, each of these arithmetic units can perform a coniilq!x
operation in 210 us. or a real operation in 320 ns. The combination of these paralel aitd-
mnetic units allows a complex butterfly to be computed in 240 ns (three iicrocvcles of Ihc
arithmetic processor (AP)). It actually takes 27 AP microcycles to perform a butterflv from
start to finish. The pipe-lining, however, allows a butterfly to be completed every 2 1) its.

It can the readily denionstrated that the ARO processor is not suited to calculating ilic
1HIT eficientl v. Consider the FIT buitterfiy, requiring two real multiplications and thitr
real adds. The butterfly couldl not be performed in less than 180 ns (assuming tlie two real
multiplications are performed as complex operations) and the HFIT is capable of transforming
real data only. Jindalee signal processing requires a complex transform be donie ie cw,
separate IHartlev Transforms are required (as explained in Section 2). It is apparent the
FFT algorithm will execute approximately four times faster than the FIT on the .\He
processor (2 FliTs against 1 FFT and butterfly time at least twice as long for the FLIT).
('learly it would not be practical to implement the FlIT on the ARe.

Future Jindalee radars will have an increased range and Doppler processing FF1V load. The
digital beamforming load will also increase, but this is riot likely to be done via FFT. For
this increased signal processing load. faster arithmetic processors will be required. We iow

look briefly at the suitability of designing a new processor around tie FlIT rather than th,-
U-T.

To perform a real or complex Fourier Transform requires almost tie samte number of real
operations for both the FlIT and FFT. Also, due to the similarity of the two fast algorithms.
neither appears to be more suited than the other in terms of ease of arithmetic hardware

design. It is therefore concluded that the Fast Hartley Transform offers no advantages o)ve1r
the Fast Fourier Transform for the design of any future signal processor.

To increase FF1 through-put there are other areas that can be addressed. [lie AIO pro-
cessor implements a radix-2 FFT. There exist FFT algorithms, such as the split-radix, that
execute in about half the time(ref.6). Discussion with colleagues indicates a hardwar' litni-

tation prevents the use of a faster FFT on the ARe.

A further limitation of the A110 processor is the lack of hardware 'bit-reversal'. Bit-rcversal is
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required to unscramble data prior to or after performing an FFT. This bit-reversal is currentHY
done in software and considerably slows the FFT routine. These hardware inadequacies.
plus factors such as vector set-up times, become more dominant for transforms of short data
sequen( ., and should be taken into account when designing a new processor.

5 CONCLUSION

Despite much recent interest, there appears to be no significant benefit in using the F:-l
Hartley Transform in place of the Fast Fourier Transform. The FLT requires a comparable
number of steps to execute and is of comparable complexity to the FFT. The FlIT does
have the advantage that the forward and inverse transforms are the same, but this is only of
advantage on a limited memory machine.

For any future arithmetic processor, improved FFT performance can be achieved by ad(lhcs -
ing the ARO hardware limitations. In particular

Base the arithmetic hardware around the split-radix rather than
radix-2 butterfly (or perhaps design the hardware so that any
new algorithms can be readily microcoded in the future)

Implement hardware bit-reversal

Reduce vector set-up times

-L. . -- . . = =.• m .n.- mu m m
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